Harnessing the power of biotechnology to tackle a range of health and environmental issues

At the Centre for Cell Factories and Biopolymers, our mission is to research and develop innovative functional materials and technologies that can provide solutions for global health and environmental challenges.

Our aim is to harness the capacity of biological systems to synthesise and assemble biologically active materials by applying bioengineering, synthetic biology and biotechnological approaches. The Centre forms part of the Griffith Institute for Drug Discovery.

Bernd Rehm

Professor Bernd Rehm

Principal Research Leader

Professor Bernd Rehm is the Director of the Centre for Cell Factories and Biopolymers. He is author and coauthor of over 200 scientific publications, which have been cited over 10,000 times. Professor Rehm is also an inventor or co-inventor on 58 patent applications, 25 of which are granted patents.

More info

Frank Sainsbury

Dr Frank Sainsbury

Research Leader

Dr Frank Sainsbury’s research uses protein engineering and biophysical techniques to study the self-assembly of proteins as tools in basic science and technology. He is an author on >50 scientific publications and inventor on 5 patents. He has expanded his research program on virus-like particles and protein surfactants for the design of biomimetic and hybrid biomaterials.

More info

FUNDAMENTAL RESEARCH

Our research explores how microorganisms synthesise polymers and assemble biological nano-/micro-structures. We investigate the biosynthesis of polysaccharides and biopolyesters as well as the formation of biological supramolecular assemblies. While biopolymers are explored as functional biomaterials for medical and industrial applications, their synthesis steps also provide exciting new targets for antimicrobial treatment by impacting the formation of pathogen-associated capsular and biofilm polysaccharides.

RESEARCH FOCUS

A major research focus of ours is the design and development of innovative bio-based materials for uses as vaccines and in diagnostics. We apply a broad spectrum of molecular biological and biochemical methods, as well as imaging techniques, to investigate the molecular mechanisms of polymer synthesis and self-assembly of biological structures. New insights into biological nano-/micro-structure assembly and polymer production inform synthetic biology/bioengineering approaches to design and produce novel high-performance materials for applications such as drug delivery, vaccines, bioseparation resins, catalysts, diagnostic and research reagents.

Translational Research

New discoveries in biopolymer synthesis and self-assembly of biological structures will be translated into the design and production of high-value functional materials. We aim to develop platform technologies for the biotechnological manufacture of novel and competitive products.

A major focus is the design and biotechnological production of innovative bio-based materials for the prevention, treatment and diagnosis of diseases. Disease focus areas are bacterial and viral infections such as those caused by Mycobacterium tuberculosis, Pseudomonas aeruginosa, Neisseria meningitidis, Streptococcus pneumoniae, HCV and Dengue as well as cancer. Industrial applications implement the design and biotechnological manufacture of materials exhibiting properties suitable for applications in bioseparations, biocatalyst immobilisation, biosensor and bioremediation.

Development of Platform Technologies image depiction

Vacancies

Multiple PhD scholarships are available, contact us for more information.

RESEARCH INFORMATION FOR POSTDOCTORAL STAFF AND PHD CANDIDATES

Our molecular biotechnological research is aimed at developing new technologies and products with commercial potential.

Our research topics include:

Disease prevention

Design and development of vaccines against infectious diseases such as meningitis, pneumonia, tuberculosis, and infections caused by Pseudomonas aeruginosa, Hepatitis C, Dengue virus

Journal articles

Bioengineering towards self-assembly of particulate vaccines

Bioengineering a bacterial pathogen to assemble its own particulate vaccine capable of inducing cellular immunity

Disease diagnostics

Devising innovative nano-/micro-devices for disease diagnostics. Functionalised materials are bioengineered and designed for sensitive and specific detection of a range of diseases.

Journal articles

New Skin Test for Detection of Bovine Tuberculosis on the Basis of Antigen-Displaying Polyester Inclusions Produced by Recombinant Escherichia coli

In Vivo Self-Assembly of Fluorescent Protein Microparticles Displaying Specific Binding Domains

Disease treatment

Molecular mechanisms of exopolymer biosynthesis to unravel targets for antibacterial treatment

Bacterial biofilm formation and properties

Biotechnological production of therapeutic proteins

Journal articles

Biological function of a polysaccharide degrading enzyme in the periplasm

Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation

Innovative bio-based materials

Research and development of biopolymer-based assemblies, material properties, applications and design space aiming at the establishment of platform technologies

Biological production of polysaccharides to obtain tailor made hydrogels for medical and industrial application

Bioprocess development towards the manufacture of innovative bio-based materials.

Journal articles

Synthetic biology towards the synthesis of custom-made polysaccharides

Alginate Polymerization and Modification Are Linked inPseudomonas aeruginosa

Stay up to date